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Abstract
We study the thermodynamic properties and the phase diagrams of a multi-
spin antiferromagnetic spherical spin-glass model using the replica method. It
is a two-sublattice version of the ferromagnetic spherical p-spin glass model.
We consider both the replica-symmetric and the one-step replica-symmetry-
breaking solutions, the latter being the most general solution for this model.
We find paramagnetic, spin-glass, antiferromagnetic and mixed or glassy
antiferromagnetic phases. The phase transitions are always of second order
in the thermodynamic sense, but the spin-glass order parameter may undergo a
discontinuous change.

PACS numbers: 05.50.+q, 75.10.Hk, 75.10.Nr

1. Introduction

Mean-field theories for spin glasses have not been limited to their original aim of explaining
peculiar behaviours presented by some magnetic alloys, but have been applied to a large
number of complex systems, ranging from biology and optimization problems to information
processing [1, 2]. The paradigmatic mean-field spin-glass model is the Sherrington–
Kirkpatrick (SK) model [3]. By the application of the replica method, it was found that
the low temperature spin-glass phase is described by a solution with an infinite number of
stages of replica symmetry breaking (∞ RSB) according to a hierarchical scheme proposed
by Parisi [4]. The difficulty posed by the analysis of this solution, analytically as well as
numerically, encouraged the investigation of simpler models that retain some of the essential
aspects of the SK model.

The generalization from a spin-glass interaction between pairs of spins to an interaction
among sets of p > 2 spins has attracted considerable interest in this respect [5]. For instance,
in the limit p → ∞ this model becomes equivalent to the random energy model (REM) [6],
which can be solved with or without the help of the replica method. Moreover, the first stage
of replica symmetry breaking (1RSB) is shown to be exact for this model. Another instance

1751-8113/08/324010+10$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/32/324010
mailto:danilo@if.usp.br
http://stacks.iop.org/JPhysA/41/324010


J. Phys. A: Math. Theor. 41 (2008) 324010 D B Liarte and C S O Yokoi

in which the analysis becomes simpler is the spherical version of the model [7, 8]. This model
can be exactly solved and exhibits a spin-glass phase described by a stable 1RSB solution for
any p, even to the lowest temperatures.

Experimental works report evidences of a spin-glass behaviour and of coexistence
of spin-glass and antiferromagnetic orders, both in diluted antiferromagnetic materials (e.g.
FexMg1−xCl2) [9–11] and in mixed antiferromagnetic compounds (e.g. FexMn1−xTiO3)
[12, 13]. As a theoretical approach to these systems, the two-sublattice SK model was
introduced to describe re-entrant transitions from the antiferromagnetic to the spin-glass phase
[14, 15]. An extended version of this model was investigated in an attempt to reproduce
the experimental results observed in the experimental systems mentioned previously [16].
Needless to say, the solution of the two-sublattice SK model is hard to be analysed analytically
as well as numerically. As a simpler model which retains some essential features of the
two-sublattice SK model, a two-sublattice version of the REM was proposed recently [17]
to explain some experimental results in the disordered antiferromagnetic system Fe0.5Zn0.5F2

[18]. The foregoing experimental and theoretical investigations motivated us to consider a
two-sublattice version of the spherical spin-glass model with multi-spin interactions. The
relative simplicity of the model enables us to investigate the phase diagrams of the model for
the full range of parameters.

2. The model

Let us consider a set of 2N continuous spins distributed in two sublattices, A and B, each
consisting of N spins. The model is defined by the Hamiltonian

H = −
∑

1�i1<···<ir�N
1�j1<···<jr�N

Ji1···ir j1···jr
Si1 · · · Sir σj1 · · · σjr

+
J0

N

N∑
i,j=1

Siσj − H

N∑
i=1

(Si + σi), (1)

where H is an applied magnetic field and J0 > 0 is the antiferromagnetic interaction between
different sublattices. The interactions Ji1···ir j1···jr

among the set of r spins on different sublattices
are independent Gaussian random variables with zero mean and variance

〈
J 2

i1···ir j1···jr

〉
J

= J 2(r!)2

N2r−1
, (2)

where the factor (r!)2 is a matter of convention while the dependence on N is needed to ensure
an extensive free energy. The spins, Si in the A sublattice and σi in the B sublattice, are real
continuous variables ranging from −∞ to ∞. The partition function is given by

Z =
∫ ∞

−∞

N∏
i=1

dSi dσi δ

(
N −

N∑
i=1

S2
i

)
δ

(
N −

N∑
i=1

σ 2
i

)
e−βH, (3)

where β = 1/T is the inverse temperature (we set kB = 1) and the delta functions impose
spherical constraints to ensure the existence of a well-defined limit at low temperatures.

3. The replica approach

In the replica method the self-averaged free energy per spin is computed by means of

−βf = lim
n→0

lim
N→∞

1

nN
ln〈Zn〉J , (4)
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where 〈· · ·〉J denotes the average over the Gaussian random variables Ji1···ir j1···jr
[1]. A standard

calculation leads to the following expression for the free energy per spin,

βf = lim
n→0

1

2n

⎧⎨
⎩

∑
I

⎡
⎣∑

α,β

(
q−1

I

)αβ
mα

I m
β

I − 2βH
∑

α

mα
I − ln det qI

⎤
⎦

− 2n(ln 2π + 1) − β2J 2
∑
α,β

(
q

αβ

A

)r(
q

αβ

B

)r
+ 2βJ0

∑
α

mα
Amα

B

⎫⎬
⎭ , (5)

where I = A,B is the sublattice index, α, β = 1, 2, . . . , n are replica indices and (qI )
αβ = q

αβ

I

with qαα
I = 1. The saddle-point equations for q

αβ

I and mα
I are given by∑

β

(
q−1

A

)αβ
m

β

A − βH + βJ0m
α
B = 0, (6)

(
q′−1

A

)αβ
+ β2J 2r

(
q

αβ

A

)r−1(
q

αβ

B

)r = 0, (7)

where

(q′
A)αβ = q

αβ

A − mα
Am

β

A, (8)

which are coupled to similar equations obtained by the interchange A ↔ B. Here, q
αβ

A and
q

αβ

B denote the overlap between replicas,

q
αβ

A = 1

N

∑
i

Sα
i S

β

i , q
αβ

B = 1

N

∑
i

σ α
i σ

β

i , (9)

and mα
A and mα

B are the sublattice magnetizations,

mα
A = 1

N

∑
i

Sα
i , mα

B = 1

N

∑
i

σ α
i . (10)

To evaluate the free energy explicitly, it is necessary to impose some structure on qI and
mα

I . In this work, we consider the replica-symmetric (RS) and 1RSB Ansätze, the latter being
the most general solution for this model [7].

3.1. The RS solution

Usually the RS form of the overlap matrix is appropriate for the description of systems when
there is only a single equilibrium state. We therefore expect this Ansatz to be valid in the
regions of high temperatures and high magnetic fields. Assuming for each sublattice I = A,B,

q
αβ

I = (1 − qI )δ
αβ + qI , mα

I = mI , (11)

the free energy per spin becomes

βf = 1

2

∑
I

[
m2

I

1 − qI

− 2βHmI − ln(1 − qI ) − qI

1 − qI

]
− (ln 2π + 1) + βJ0mAmB

− β2J 2

2

(
1 − qr

Aqr
B

)
, (12)

where mI and qI satisfy the saddle-point equations,

mA

1 − qA

− βH + βJ0mB = 0, (13)
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m2
A − qA

(1 − qA)2
+ β2J 2rqr−1

A qr
B = 0, (14)

coupled to two similar equations obtained by the interchange A ↔ B.

3.2. The 1RSB solution

At low temperatures the glassy behaviour is signalled by ergodicity breaking, with the
emergence of many inequivalent pure states that are described by the breaking of replica
symmetry [1]. For the two-sublattice model the 1RSB Ansatz takes the form

q
αβ

I = (1 − q1I )δ
αβ + (q1I − q0I )ε

αβ + q0I , mα
I = mI , (15)

for I = A,B where,

εαβ =
{

1 if α and β belong to the same diagonal block,

0 otherwise,
(16)

which results in the following expression for the free energy per spin

βf = 1

2

∑
I

{
m2

I

1 − qI

− 2βHmI − q0I

1 − qI

− ln(1 − q1I ) − 1

x
ln

(
1 − qI

1 − q1I

)}

−(ln 2π + 1) + βJ0mAmB − β2J 2

2

[
1 − (1 − x)qr

1Aqr
1B − xqr

0Aqr
0B

]
, (17)

where the saddle-point equations are given by,

mA

1 − qA

− βH + βJ0mB = 0, (18)

β2J 2rqr−1
1A qr

1B +
q0A − q1A

(1 − q1A)(1 − qA)
− q0A − m2

A

(1 − qA)2
= 0, (19)

β2J 2rqr−1
0A qr

0B − q0A − m2
A

(1 − qA)2
= 0, (20)

with,

q
p

I = xq
p

0I + (1 − x) q
p

1I , (21)

coupled to similar equations given by the interchange A ↔ B. Moreover, the dimension of
the diagonal blocks x also contributes the additional equation

1

2

∑
I

[(
m2

I − q0I

)
(q0I − q1I )

(1 − qI )
2

+
1

x2
ln

(
1 − qI

1 − q1I

)
+

1

x

(
q0I − q1I

1 − qI

)]

+
β2J 2

2

(
qr

0Aqr
0B − qr

1Aqr
1B

) = 0. (22)

Note that we have assumed the same x for the diagonal blocks in both sublattices, because the
assumption xA �= xB leads to the RS solutions described by (13) and (14).

4. The phase diagrams

We present the results only for r = 3 since the general features of the phase diagrams do not
depend sensitively on r.
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Figure 1. The zero-field phase diagram for r = 3 showing the paramagnetic (P), antiferromagnetic
(AF), spin-glass (SG) and mixed (MX) or glassy antiferromagnetic phases. Solid lines indicate
continuous transitions and the dashed lines D1RSB transitions.

4.1. Results for H = 0

The zero-field phase diagram is shown in figure 1. We found four phases which meet at
a multicritical point: the paramagnetic (P) phase, antiferromagnetic (AF) phase, spin glass
(SG) phase and mixed (MX) phase (or glassy antiferromagnetic phase). The P and AF phases
show no replica symmetry breaking and are described by the RS solution. The P phase is
characterized by the order parameters

mA = mB = 0, qA = qB = 0, (23)

and the AF phase by

mA = −mB �= 0, qA = qB. (24)

The SG and MX phases present replica symmetry breaking and are described by the 1RSB
solution. The SG phase is characterized by the order parameters

mA = mB = 0, q0A = q0B < q1A = q1B, 0 < x < 1, (25)

and the MX phase by

mA = −mB �= 0, q0A = q0B < q1A = q1B, 0 < x < 1. (26)

If we make the substitutions mA → m,mB → −m, q0A, q0B → q0 and q1A, q1B → q1 in
(17)–(22), these equations become identical to those of one-sublattice p-spin spherical model
with ferromagnetic interactions −J0 and p = 2r [8]. Thus, in the absence of an external field
the results of the one-sublattice model can be translated to the two-sublattice model simply by
exchanging the ferromagnetic and antiferromagnetic orderings. The P–AF and the SG–MX
transitions are continuous and are characterized by the appearance of spontaneous sublattice
magnetizations mA = −mB �= 0 in the AF and MX phases. The P–SG and the AF–MX
transitions are characterized by the emergence of 1RSB solution with higher free energy than
the RS solution in the SG and MX phases. In the SG to the P transition x → 1 and q1I − q0I

vanishes discontinuously. Thus, there is a discontinuous one-step replica-symmetry-breaking
(D1RSB) transition. The AF–MX transition is also a D1RSB transition to the left of the
maximum in the boundary of the MX phase, but to the right of the maximum q0A = q0B

and q1A = q1B merge continuously at the transition with x < 1. Thus, there is a continuous
one-step replica-symmetry-breaking (C1RSB) transition.
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Figure 2. The field–temperature phase diagram of the model for J0/J = 1.5 and r = 3. The solid
lines represent continuous transitions and the dashed lines D1RSB transitions.

We observe that although the spin-glass order parameters change discontinuously across
the D1RSB transition, thermodynamically it is a second-order transition [5, 7]. This fact
depends crucially on that the position of the step from q0I to q1I is always at x = 1 in
a D1RSB transition, which means that q1I appears only on a set of zero measures. As a
consequence, the free energy and its first derivatives change continuously. In particular, the
entropy per spin,

s = − ∂f

∂T
= −1

2

∑
I

[
m2

I

1 − qI

− q0I

1 − qI

+
1 − x

x
ln(1 − q1I ) − 1

x
ln(1 − qI )

]

− 1

2
β2J 2

[
1 − (1 − x)qr

1Aqr
1B − xqr

0Aqr
0B

]
+ (ln 2π + 1), (27)

is continuous across the transition, implying no latent heat. A discontinuity is observed only
in the second derivative of the free energy, with a jump in the specific heat, making it a
second-order transition in Ehrenfest’s classification scheme.

4.2. Results for H > 0

The phase diagram of the model in a uniform external field is shown in figure 2 for J0/J = 1.5
and r = 3. We again found four phases that meet at a multicritical point. The P and AF
phases show no replica symmetry breaking and are described by the RS solution. The P phase
is characterized by the order parameters

mA = mB �= 0, qA = qB, (28)

and the AF phase by

mA �= mB, qA �= qB. (29)

The SG and MX phases present replica symmetry breaking and are described by 1RSB
solution. The SG phase is characterized by the order parameters

mA = mB �= 0, q0A = q0B, q1A = q1B, 0 < x < 1, (30)

and the MX phase by

mA �= mB, q0A �= q0B, q1A �= q1B, 0 < x < 1. (31)

The order parameters as functions of the external field are plotted in figure 3 for
r = 3, J0/J = 1.5 and T/J = 0.5, when the system undergoes transitions from MX to

6
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H / J

-0.5

0

0.5

1

Figure 3. The order parameters as functions of the magnetic field for r = 3, J0/J = 1.5 and
T/J = 0.5. The full lines represent mA and mB , the dotted lines q0A and q0B , the dashed lines
q1A and q1B , and the dash-dotted line represents x.

0 0.4 0.8 1.2
T / J

-0.5

0

0.5

1

Figure 4. The order parameters as functions of the temperature for r = 3, J0/J = 1.5 and
H/J = 1. The full lines represent mA and mB , the dotted lines q0A and q0B , the dashed lines q1A

and q1B , and the dash-dotted line represents x.

0 0.5 1
T/J

-4

-3.5

-3

f/
J

Figure 5. Free energy per spin as a function of temperature for H/J = 1.0, J0/J = 1.5 and
r = 3. The solid and dashed lines represent the 1RSB and RS solutions respectively.

SG and from SG to P phases for increasing fields. The MX–SG transition takes place at
H/J = 1.32. At this transition the sublattice order parameters mA and mB, q0A and q0B , and
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Figure 6. The field–temperature phase diagrams for various values of J0. The full line represents
continuous transitions while the dashed and dotted lines represent D1RSB transitions.

q1A and q1B become identical with x < 1, implying a continuous transition between RSB
phases. At the SG–P transition at H/J = 3.15 the order parameters q0A = q0B and q1A = q1B

merge continuously with x < 1, indicating a C1RSB transition.
Figure 4 shows the order parameters as functions of the temperature for r = 3, J0/J = 1.5

and H/J = 1, when the system undergoes transitions from MX to AF and from AF to
P phases for increasing temperatures. The MX–AF transition takes place at T/J = 0.58.
At this transition the sublattice magnetizations mA and mB change continuously. However,
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q0B and q1B do not merge continuously with q1A and q1B . Also x → 1 at the transition,
which indicates a D1RSB transition. The AF–P transition at T/J = 0.95 is a conventional
continuous transition between RS phases.

The free energies of the RS and 1RSB solutions for r = 3, J0/J = 1.5 and H/J = 1
are shown in figure 5 across the MX–AF transition. We observe that in the MX phase, the
free energy of the 1RSB solution is higher than the RS solution. A similar behaviour was also
found in the one-sublattice model [7]. In the replica approach, this indicates that we must
choose the 1RSB rather than the RS solution [1].

Figures 6(a)–( f ) show the evolution of the field–temperature phase diagrams for
increasing values of the antiferromagnetic coupling J0. In figure 6(a) for J0/J = 0.25
only the SG and the P phases are present. The P–SG boundary has a maximum. It is a D1RSB
transition to the left of maximum and C1RSB transition to the right. This feature of P–SG
transition is common to all the subsequent phase diagrams. In figure 6(b) for J0/J = 0.5 the
AF and MX phases are present for small magnetic fields. The P–AF and MX–SG transitions
are always continuous. The MX–AF transition is of D1RSB type. In figure 6(c) for J0/J = 1.0
the MX phase extends to zero temperature. In figure 6(d ) the AF–MX boundary exhibits a
C1RSB transition in the low field side. This feature of the AF–MX transition which starts at
J0/J = 1.72 is common to all subsequent phase diagrams. In figure 6(e) for J0/J = 3.5 the
MX phase is no longer present at zero field. Finally, in figure 6( f ) the D1RSB transition line
has disappeared in the P–SG boundary, and only the C1RSB transition line remains. Also
the D1RSB transition in the MX–AF boundary becomes again a C1RSB transition before
reaching the multicritical point.

5. Conclusions

We have studied the thermodynamic properties and phase diagrams of an r-spin
antiferromagnetic spherical spin-glass model using the replica method. For this class of
models the first step in the replica symmetry breaking is sufficient [7]. The model is a
two-sublattice version of the p-spin ferromagnetic spherical spin-glass model [8]. The two
models become essentially identical in their properties in the absence of an external field if
the roles of the ferromagnetic and the antiferromagnetic orderings are exchanged. The model
can also be considered as a spherical version of the antiferromagnetic SK model [14–16] and
the antiferromagnetic REM model [17].

We have presented a detailed numerical study for the representative case r = 3. The
phase diagrams comprise the paramagnetic (P) phase, the antiferromagnetic (AF) phase, the
spin-glass (SG) phase and mixed (MX) or glassy antiferromagnetic phases. All the transitions
between these phases are of the second order in the thermodynamic sense. However, the
spin-glass order parameters may change continuously (C1RSB) or discontinuously (D1RSB)
in the SG–P and MX–AF transitions.

Previous studies of the same problem in the antiferromagnetic SK model [14–16] and
the antiferromagnetic REM model [17] have yielded qualitatively similar phase diagrams.
However, the P–SG and AF–MX transitions are of continuous ∞ RSB type in the
antiferromagnetic SK model [14–16] and of D1RSB type in the REM model [17].
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